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LETTER TO THE EDITOR 

Moment of inertia of doubly connecting bonds in 
two-dimensional bond percolation 

Jeffrey D Miller 
Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 13 February 1990 

Abstract. By applying a theorem from conformal field theory to bond percolation in two 
dimensions we obtain an equation for the second moment I of bonds which doubly connect 
a percolation cluster: ( I )  = A(5&/27a2) (p  - P , ) - ~ .  The equation is exact as the occupancy 
probability p approaches the critical probability p ,  from either side. A is a calculable 
lattice dependent number which for a square lattice equals i. 

Percolation models are used to understand properties of random systems; in particular, 
random systems which, at a certain concentration of some quantity, make a transition 
from a disconnected to a connected phase. The connectivity of percolation clusters 
has therefore been a subject of considerable interest (Pike and Stanley 1981, Coniglio 
1982, Stanley and Coniglio 1983). In this letter we will consider doubly connecting 
bonds. These are pairs of bonds belonging to the same cluster which, if removed 
together, cause the cluster to which they belong to fall into two disconnected pieces, 
but if removed separately, leave the cluster connected. We show that the c-theorem 
sum rule of conformal field theory (Cardy 1988) gives an asymptotically exact equation 
for the percolation average of the sum of the square of the distances from a fixed bond 
(at the origin), to all of the bonds which, together with the fixed bond, doubly connect 
the cluster (figure 1). A given percolation configuration will contribute to this sum 
only if the lattice edge at the origin is occupied by a bond (a bond must be present 
in order for it to belong to a pair of doubly connecting bonds). For p d pc every cluster 
is finite and this definition of doubly connecting bonds is unambiguous. However for 
p > p c  the edge at the origin may (if it is occupied) belong to the (unique) infinite 
cluster so that it is necessary to specify boundary conditions. We shall identify the 

Figure 1. This cluster contributes I = r: + r: to the moment of inertia of doubly connecting 
bonds around the origin. 

0305-4470/90/110551+05%03.50 @ 1990 IOP Publishing Ltd L55 1 



L552 letter to the Editor 

boundary of the finite lattice with a single point. In the thermodynamic limit, this 
point becomes the point at infinity. With this boundary condition, ‘doubly connecting’ 
has the same meaning for the infinite cluster as it does for finite clusters: a pair of 
bonds doubly connect the infinite cluster if, when both bonds are removed, the infinite 
cluster falls into two disconnected pieces (one finite and one infinite), but remains 
connected when only one is removed. It may be helpful to regard the edge at the 
origin of the lattice as a battery, whenever it is occupied by a bond. Then the bonds 
which, along with the bond at the origin, doubly connect the cluster to which they 
belong (finite or infinite), are just those bonds which carry all the current as it flows 
from one terminal of the battery to the other. Note that if the battery belongs to the 
infinite cluster, current may flow through the point at infinity (if the terminals of the 
battery are connected by separate paths to infinity), it may only flow around some 
finite loop, or it may not flow at all. 

The c-theorem relates the conformal anomaly c, a number which characterises fixed 
points of the renormalisation group, to the second moment of the connected energy- 
energy correlation function evaluated in the scaling region, away from criticality: 

c=3rt2(2-xE) ’  r 2 ( E ( r ) E ( 0 ) ) ,  d’r. I 
Here E ( r )  is the local energy density, xE is the scaling dimension of E ( r ) ,  xE = 2- v-’, 
and r, proportional to T -  T,, is normalised so that in the continuum the reduced 
Hamiltonian is given by If, + t 1 E ( r )  d2r. This theorem is interesting because it relates 
a quantity that characterises a conformally invariant theory, the conformal anomaly 
c, to a correlation function in a theory which is not conformally invariant. It therefore 
extends the predictions of conformal invariance away from the fixed point into the 
scaling region. We will apply the sum rule to the q + 1 limit of the q-state Potts model 
which describes bond percolation (Fortuin and Kasteleyn 1972). By interpreting the 
energy-energy correlation function of the Potts model in terms of bond percolation, 
one is led to the equation for the moment of inertia of doubly connecting bonds given 
in the abstract. 

The conformal anomaly c (Kadanoff et a1 1984), and the scaling dimension xE 
(den Nijs 1979, Nienhuis 1982) of the q-state Potts model are both known: c ( q ) =  
1 -6(2-g/2)’/g, and xE = (2+g)/(2-g/2),  where q = 2 + 2  cos(rg/2), and ( 2 s  g ~ 4 ) .  
Therefore, to apply the c-theorem sum rule, it is only necessary to understand what 
the second moment of the Potts model energy-energy correlation function corresponds 
to in terms of percolation. This can be done using a high temperature expansion, the 
graphs of which correspond to percolation configurations. First consider p s p , .  The 
reduced Hamiltonian of the q-state Potts model is given by 

Here E ( r )  = (q8u,,,u, - 1) where r l ,  r2 label the ends of the bond at r, and the U are q 
component spins. The partition function is given by (Wu 1982) 

Z = Tr e-H = e-ke (1  + u s , , , )  
U edges 

(3) 

where U = e k  - 1. Each term in the product corresponds to a graph, and each factor 
to a bond. Collections of vertices connected by bonds are called clusters. Each 

cluster contributes a power of q to the trace over U. Hence, in terms of the occupancy 
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probability, p = 1 - e-qk, the graphical expansion of 2 reads 

C P b ( l  z = e ( q - l ) k e  

G 
(4) 

where b denotes the number of bonds, and n the number of clusters in G. For q = 1, 
z= 1. 

The graphical expansion of ( E ( r ) )  is well known: when (qi3u,l,u,z- 1 )  is inserted 
into the trace, the Su,1,u,2 allows one to distinguish two kinds of graphs: those in which 
rl  and r2 belong to the same cluster, and those in which they do not. The latter graphs 
do not contribute, since for these graphs the 8u,I,o,z lowers q" by one power of q, and 
so equals q- ' ,  so that the contribution of these graphs is proportional to ( q q - ' - 1 ) ,  
which is identically zero. Therefore 

where C (  i , j )  equals one if i is connected to j and zero otherwise. Thus when q is set 
equal to one, ( E ( r ) )  equals, apart from an overall factor of ( q  - l ) ,  the probability 
that r,  is connected to r2 in the percolation problem. 

To represent ( E ( r ) E ( O ) )  = (q2&,1.u,2~uo1.uoz - q&, - q~uOl.u02+ 1) graphically three 
types of graphs have to be distinguished. First of ail there are the graphs in which r ,  
is connected to r 2 ,  and 0, is connected to 02 .  For these graphs, both delta functions 
equal one, so that they contribute 

to the correlation function. Second, there are the graphs with r ,  connected to r, and 
0, not connected to 0 2 ,  or with 0, connected to O2 but r ,  not connected to r 2 .  For 
these graphs, one of the delta functions equals one, while the other lowers the power 
of q from the trace by one. Hence the contribution of these graphs is proportional to 
(q2q-' - qq-' - q + 1) which identically equals zero. Finally, there are the graphs with 
neither r l  connected to r2 nor 0, connected to 02 .  There are several ways this can 
happen. If all four vertices belong to different clusters, or if two belong to the same 
cluster, while the other two belong to different clusters, both delta functions lower q" 
by one power of q. The contribution of these graphs is proportional to (q2q-2  - qq-' - 
qq-' + 1 = 0), so that these graphs do not contribute either. Lastly there are the graphs 
with r,  connected to 0, and r2 connected to O2 or vice versa (figure 2). For these graphs 

Figure 2. This configuration of two unconnected clusters contributes to the order ( 9 - 1 )  
term in the energy-energy correlation function. If bonds are placed at 0 and at r, a doubly 
connected cluster is formed. 
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the delta functions equal one another, and have the effect of lowering the power of 
q" by one. Hence these graphs contribute 

( q  - 1 p - I  e ( q - l ) k e  c U ( r ,  O)pb(l - P ) e - b q n  (7) 
G 

to the correlation function, where U ( r ,  0) equals one if neither rl is connected to r2 
nor O1 is connected to O2 but r l  is connected to 0, and r2 is connected O2 or vice versa. 

The connected energy-energy correlation function, then, consists of two terms. 
One term, with a coefficient proportional to ( q  - 1)2,  corresponds to the connected 
correlation between rl  being connected to r2 on the one hand, and O1 being connected 
to O2 on the other. The second term, which has a coefficient proportional to ( q - l ) ,  
corresponds to the probability that, if bonds are put at 0 and r, connecting O1 to 0 2 ,  
and rl to r2, two previously unconnected clusters become one doubly connected cluster. 

The interpretation of the energy-energy correlation function for p > pc  proceeds in 
the same way as for p c p c ,  except that the spins of the Potts model which lie on the 
lattice boundary must be held fixed to one of their q values in order to break the Z( q )  
symmetry. Because the boundary spins are fixed, clusters that are connected to the 
boundary must be distinguished from clusters that are not connected to the boundary, 
since the former do not contribute any powers of q when the trace over spins is taken. 
If the lattice boundary is taken to be a single point, every bond connected to the 
boundary belongs to the spanning cluster. Since the spanning cluster is unique, delta 
functions in correlation functions play the same role above p ,  as they do below: they 
lower the power of q from the spin trace by one whenever the spins of the delta 
functions belong to different clusters. Hence the energy-energy correlation has the 
same interpretation above p c  as it does below. 

The c-theorem can now be applied by expanding c ( q ) ,  xE(q), and (E(r)E(O)), 
around q = 1 and then equating powers of ( q  - 1) .  This leads to an infinite number of 
exact relations for bond percolation in the scaling region. Unfortunately, the relations 
arising from powers of (9-1)  greater than one are of little interest. This is because 
the expansion of q" in the energy-energy correlation function introduces factors of n, 
the total number of clusters on the lattice, into the correlation functions. For example, 
the term second order in ( q  - 1) gives (nZ) - (n ) (Z )  = B( p - p J 2  where B is a calculable 
number, and I the moment of inertia of doubly connecting bonds around the origin. 
If both sides of the above equation are divided by the total number of sites in the 
lattice, N, to get a meaningful thermodynamic equation, the right side, which is 
independent of N, vanishes as N +. CO, and one can only say that the number of clusters 
per site is not correlated to the moment of inertia of doubly connecting bonds. 

The order ( q  - 1 )  term remains. On a regular lattice the c-theorem sum rule reads 

where a is the total area of the lattice, and t = ( e / a ) ( k  - kc) .  Using the equations for 
c ( q )  and xE(q) we find cr(l)=5a/4.rr and 2-xE =$. To leading order, k - k , =  
In( 1 + 2( p c  - p ) )  = 2( p c  - p ) .  Collecting terms we have 

where the ( E ( r ) E ( 0 ) ) o ( 9 - l )  stands for the term first order in ( q -  1). The graphs which 
contribute are those in which two disjoint clusters become doubly connected if bonds 
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are placed on vacant edges at 0 and r. We could, however, equally well sum over 
graphs which have bonds at 0 and r that doubly connect a single cluster, as long as 
the probability for the graph to occur, p b ( l  - P ) ~ - ~ ,  is multiplied by - P ) ~ .  
Moreover we can exchange the order of the sum over r and the sum over G. Then 
for a given graph, Z, r2  U (  r, 0) is the sum of the square of the distances from the bond 
at 0 (if there is one; otherwise the graph does not contribute) to all of the other bonds 
which, with the bond at 0, doubly connect the cluster to which they belong. Thus we 
have 

( I ) = C  Z(G)pb( l  - P ) ' - ~  - ( pc  - p ) - 2  + less singular. 
G 

For a square lattice a / e  = 4. Also, p c  = i, so that, in the scaling region, the factor 
~ ~ ( 1 - p ) ~ ~  equals one to leading order in ( p - p , ) ,  and so for our purposes may be 
ignored. Hence for a square lattice, 

5& 
( I )  = 7 ( pc  - p ) - *  + less singular. 

547r 

Monte Carlo simulations on a square lattice give results consistent with the above 
expression. However statistical errors in the data are too large for these results to be 
considered a definite confirmation of the predicted equation. 

In summary we have found an asymptotically exact expression for the moment of 
inertia of doubly connecting bonds around the origin. If the telephone network were 
a percolating system near p c ,  this formula gives the distance (on average) that a 
repairman would have to travel in order to check all the weak links in the network. 

I would like to thank John Cardy for suggesting this application of the c-theorem and 
for helpful discussions. I would also like to thank Bertrand Duplantier for several 
interesting discussions. This work was supported by NSF Grant PHY 86-14185. 
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